我一度是Hadoop的忠实拥护者。我喜欢它可以轻而易举地处理PB级别的数据,喜欢它可以将运算扩展到数千个节点的分布式计算能力,也喜欢它存储和加载数据的灵活性。但在经历过一系列的探索与使用之后,我对Hadoop非常失望。

下面就是我为什么不使用Hadoop做数据分析的见解。

Hadoop只是一个框架,而非一种完备的解决方案。人们期望Hadoop可以圆满地解决大数据分析问题,但事实是,对于简单的问题Hadoop尚可,对于复杂的问题,依然需要我们自己开发Map/Reduce代码。这样看起来,Hadoop与使用J2EE编程环境开发商业分析解决方案的方式别无二致!

Pig和Hive都非常不错,但却受到架构的局限。Pig和Hive都是设计精巧的工具,它们可以让人迅速上手,提高生产力。但它们毕竟只是一种工具,用于将常规的SQL或文本转化成Hadoop环境上的Map/Reduce查询。Pig和Hive受限于Map/Reduce框架的运作性能,尤其是在节点通信的情况下(如排序和连接),效率更为低下。

没有软件成本,部署相对容易,但维护和开发的代价极大。Hadoop非常受欢迎的理由在于,我们可以自由的下载、安装并运行。由于它是一个开源项目,所以没有软件成本,这使得它成为一种非常吸引人的解决方案,用于替代Oracle和Teradata.但是一旦进入维护和开发阶段,Hadoop的真实成本就会凸显出来。

擅长大数据分析,却在某些特定领域表现不佳。Hadoop非常擅长大数据分析,以及将原始数据转化成应用(如搜索或文本挖掘)所需的有用数据。但如果我们并不很清楚要分析的问题,而是想以模式匹配的方式探索数据,Hadoop很快会变得一塌糊涂。当然,Hadoop是非常灵活的,但需要你花费较长的时间周期去编写Map/Reduce代码。

并行处理的性能极佳,但不排除特例。Hadoop可以将数千个节点投入计算,非常具有性能潜力。但并非所有的工作都可以进行并行处理,如用户交互进行的数据分析。如果你设计的应用没有专门为 Hadoop集群进行优化,那么性能并不理想,因为每个Map/Reduce任务都要等待之前的工作完成。

综上所述,Hadoop的确是一个令人震惊的计算框架,它可以进行大规模的数据分析。另一方面,这也意味着数据分析工作必须建立在大量的编程工作之上。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排 行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2021-12-07 11:35:00
大数据技术 ClickHouse vs StarRocks选型对比
一般来说,ClickHouse适合于维度变化较少的拼宽表的场景,StarRocks不仅在单表的测试中有着更出色的表现,在多表关联的场景具有更大的优势。 <详情>
2021-08-25 11:24:23
大数据资讯 Hadoop大数据“存算分离”,柏科数据 ISCloud分布式存储"提质增效"
业内新扩容方式“存算分离”架构的优势逐渐明显,“存算分离”成了大数据架构发展的必然趋势,成了解决行业用户在使用Hadoop时,面临计算资源浪费、存储性能低、管理成本过 <详情>
2021-05-07 11:11:30
云资讯 随着云计算等颠覆性技术的出现Hadoop将会过时
Hadoop是一个开源软件框架,它在近十年前开始流行。 <详情>
2020-11-26 09:44:25
大数据技术 学大数据需要具备什么基础和知识点?
学大数据基础包含涵盖大数据体系中的技术点,包括但不限于Linux、Zookeeper、Hadoop、Yam、Redis、HDFS、MapReduce、Hive、lmpala、Hue、Oozie、Storm、Kafka、Spark、Soar <详情>
2020-08-18 15:10:27
大数据技术 大数据不再主流受欢迎,然而Hadoop仍然至关重要
如今,开源分析已牢固地成为企业软件堆栈的一部分,“大数据”一词似乎已经过时,并且Hadoop已成为死法已成为人们公认的民间传说。不过,这太夸张了;尽管Hadoop不再炙手可 <详情>